Anomalous correlation effects and unique phase diagram of electron-doped FeSe revealed by photoemission spectroscopy
نویسندگان
چکیده
FeSe layer-based superconductors exhibit exotic and distinctive properties. The undoped FeSe shows nematicity and superconductivity, while the heavily electron-doped KxFe2-ySe2 and single-layer FeSe/SrTiO3 possess high superconducting transition temperatures that pose theoretical challenges. However, a comprehensive study on the doping dependence of an FeSe layer-based superconductor is still lacking due to the lack of a clean means of doping control. Through angle-resolved photoemission spectroscopy studies on K-dosed thick FeSe films and FeSe0.93S0.07 bulk crystals, here we reveal the internal connections between these two types of FeSe-based superconductors, and obtain superconductivity below ∼ 46 K in an FeSe layer under electron doping without interfacial effects. Moreover, we discover an exotic phase diagram of FeSe with electron doping, including a nematic phase, a superconducting dome, a correlation-driven insulating phase and a metallic phase. Such an anomalous phase diagram unveils the remarkable complexity, and highlights the importance of correlations in FeSe layer-based superconductors.
منابع مشابه
Superconductivity across Lifshitz transition and anomalous insulating state in surface K–dosed (Li0.8Fe0.2OH)FeSe
In iron-based superconductors, understanding the relation between superconductivity and electronic structure upon doping is crucial for exploring the pairing mechanism. Recently, it was found that, in iron selenide (FeSe), enhanced superconductivity (Tc of more than 40 K) can be achieved via electron doping, with the Fermi surface only comprising M-centered electron pockets. By using surface K ...
متن کاملWhat makes the Tc of monolayer FeSe on SrTiO3 so high: a sign-problem-free quantum Monte Carlo study
Monolayer FeSe films grown on SrTiO3 (STO) substrate show superconducting gap-opening temperatures ([Formula: see text]) which are almost an order of magnitude higher than those of the bulk FeSe and are highest among all known Fe-based superconductors. Angle-resolved photoemission spectroscopy observed "replica bands" suggesting the importance of the interaction between FeSe electrons and STO p...
متن کاملMeasurement of an enhanced superconducting phase and a pronounced anisotropy of the energy gap of a strained FeSe single layer in FeSe/Nb:SrTiO3/KTaO3 heterostructures using photoemission spectroscopy.
Single-layer FeSe films with an extremely expanded in-plane lattice constant of 3.99±0.02 Å are fabricated by epitaxially growing FeSe/Nb:SrTiO3/KTaO3 heterostructures and studied by in situ angle-resolved photoemission spectroscopy. Two elliptical electron pockets at the Brillouin zone corner are resolved with negligible hybridization between them, indicating that the symmetry of the low-ener...
متن کاملObservation of a remarkable reduction of correlation effects in BaCr2As2 by ARPES.
The superconducting phase in iron-based high-[Formula: see text] superconductors (FeSC), as in other unconventional superconductors such as the cuprates, neighbors a magnetically ordered one in the phase diagram. This proximity hints at the importance of electron correlation effects in these materials, and Hund's exchange interaction has been suggested to be the dominant correlation effect in F...
متن کاملEffect of strong correlations on the high energy anomaly in hole- and electron-doped high-Tc superconductors
Recently, angle-resolved photoemission spectroscopy (ARPES) has been used to highlight an anomalously large band renormalization at high binding energies in cuprate superconductors: the high energy “waterfall” or high energy anomaly (HEA). This paper demonstrates, using a combination of new ARPES measurements and quantum Monte Carlo simulations, that the HEA is not simply the byproduct of matri...
متن کامل